

Letter

Subscriber access provided by American Chemical Society

General, Stereoselective Synthesis of (Z)-#,#-Unsaturated Nitriles Promoted by Samarium Diiodide

Jose# M. Concello#n, Humberto Rodríguez-Solla, Carmen Simal, David Santos, and Nieves R. Paz

Org. Lett., **2008**, 10 (20), 4549-4552• DOI: 10.1021/ol801752m • Publication Date (Web): 23 September 2008 **Downloaded from http://pubs.acs.org on March 24, 2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

General, Stereoselective Synthesis of (*Z***)-,***γ***-Unsaturated Nitriles Promoted by Samarium Diiodide**

Jose´ M. Concello´ n,*,† Humberto Rodríguez-Solla,† Carmen Simal,† David Santos,† and Nieves R. Paz‡

*Departamento de Química Orga´nica e Inorga´nica, Uni*V*ersidad de O*V*iedo, Julia´n Cla*V*ería 8, 33071 O*V*iedo, Spain, and Instituto de Productos Naturales y Agrobiología del C.S.I.C., Carretera de La Esperanza 3, 38206 La Laguna, Tenerife, Spain*

*jmcg@unio*V*i.es*

Received July 30, 2008

ORGANIC LETTERS 2008 Vol. 10, No. 20 ⁴⁵⁴⁹-**⁴⁵⁵²**

ABSTRACT

A method to obtain (*Z***)-,***γ***-unsaturated nitriles in high or good yields and with moderate or high stereoselectivity is described. The products were achieved through the photoinduced metalation of 3-acetoxy-4-chloronitriles with SmI2. The starting compounds were readily prepared,** and a mechanism is proposed to explain this stereoselective β -elimination reaction.

Nitriles are important compounds in organic synthesis since they have been widely employed for the introduction of a variety of functional groups.¹ It has been shown that β ,*γ*unsaturated nitriles are useful substrates, 2 and several methods have been reported regarding their synthesis. In particular, the synthesis of (E) - β , γ -unsaturated nitriles is generally achieved from the cyanation process of different starting materials such as allylic alcohols, 3 halides, 3^b acetates,⁴ carbonates,⁴ ethers,^{2a,b} phosphates,^{2c} carbonyl com-

10.1021/ol801752m CCC: \$40.75 2008 American Chemical Society **Published on Web 09/23/2008**

pounds,⁵ or the hydrocyanation of butadiene.⁶ Other methods employ isomerization processes, $\frac{7}{3}$ a carbenoid insertion into alkenylzirconocenes,⁸ Ru-catalyzed cross-metathesis reactions, 9 or classical methods such as the Wittig reaction.¹⁰ However, most of these methods require toxic reagents^{$2-6$} or expensive catalysts.⁹ Other methods are limited by their poor generality, $2a,3a,7,8$ low yields, $2a,7,8,10$ or the low stereoselectivity during the generation of the C=C bond. $4b,8-10$ Finally, in other cases, the utilization of unsaturated compounds (with the appropriate relative configuration) as starting materials constitutes a drawback.²⁻⁷ Taking into account that, in general, *Z*-unsaturated compounds are more difficult to access than the corresponding *E*-isomers, it was

[†] University of Oviedo.

[‡] Instituto de Productos Naturales y Agrobiología del C.S.I.C.

⁽¹⁾ Rappoport, Z. *The Chemistry of the Cyano Group*; Wiley-Interscience: New York, 1970.

^{(2) (}a) Murakami, M.; Kato, T.; Mukaiyama, T. *Chem. Lett.* **1987**, 1167– 1170. (b) Hayashi, Y.; Mukaiyama, T. *Chem. Lett.* **1987**, *1811*, 1814. (c) Araki, S.; Minami, K.; Butsugan, Y. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 629– 630.

^{(3) (}a) Rad, M. N. S.; Khalafi-Nezhad, A.; Behrouz, S.; Faghihi, M. A. *Tetrahedron Lett.* **2007**, *48*, 6779–6784. (b) Kanai, T.; Kanagawa, Y.; Ishii, Y. *J. Org. Chem.* **1990**, *55*, 3274–3277.

^{(4) (}a) Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura, T. *Organometallics* **1998**, *17*, 4835– 4841. (b) Tsuji, Y.; Yamada, N.; Tanaka, S. *J. Org. Chem.* **1993**, *58*, 16– 17.

⁽⁵⁾ Yoneda, R.; Harusawa, S.; Kurihara, T. *J. Org. Chem.* **1991**, *56*, 1827–1832.

⁽⁶⁾ Bini, L.; Müller, C.; Wilting, J.; von Chrzanowski, S. A. L.; Vogt, D. *J. Am. Chem. Soc.* **2007**, *129*, 12622–12623.

⁽⁷⁾ Acosta-Ramírez, A.; Muñoz-Hernández, M.; Jones, W. D.; García, J. J. *Organometallics* **2007**, *26*, 5766–5769.

⁽⁸⁾ Kasatkin, A. N.; Whitby, R. J. *Tetrahedron Lett.* **2000**, *41*, 6211– 6216.

⁽⁹⁾ Hoveyda, H. R.; Ve´zina, M. *Org. Lett.* **2005**, *7*, 2113–2116.

⁽¹⁰⁾ Oda, R.; Kawabata, T.; Tanimoto, S. *Tetrahedron Lett.* **1964**, *25*, 1653–1657.

not surprising to find in the literature only one example described. In this case, the (Z) - β , γ -unsaturated nitrile was prepared from (*Z*)-1-iodohex-2-ene, and to the best of our knowledge, no general method for the preparation of (*Z*)- β , γ -unsaturated nitriles through an elimination reaction has been reported to date. Therefore, an efficient method to synthesize (Z) - β , γ -unsaturated nitriles with high stereoselectivity, in which nontoxic starting materials are employed, would be desirable.

Samarium diiodide has been widely employed to promote β -elimination reactions with high or total stereoselectivity.¹¹ In this field, we have previously reported the SmI₂-promoted stereoselective synthesis of (E) - α , β -unsaturated esters,¹² amides,¹³ or ketones,¹⁴ (*Z*)-vinyl halides,¹⁵ and (*Z*)-vinyl and allylsilanes.16 In all these cases, the 1,2-elimination reaction was initiated by the metalation of an activated C-halogen bond.

However, samarium diiodide has been scarcely utilized to promote elimination reactions through the metalation of nonactivated C-Cl bonds due to the lack of reactivity of these bonds. Several methods have been described to overcome this drawback, the photoinduced metalation of nonactivated C-Hal bonds being the most effective. Thus, some synthetic applications based on the photoinduced metalation of nonactivated C-Hal bonds with $SmI₂$ have been reported.¹⁷ In this field, we have recently reported the photoinduced SmI2-promoted metalation of nonactivated ^C-Cl bonds of *^O*-acetyl chlorohydrins toward the synthesis of nonfunctionalized alkenes with total or high (*Z*)-selectivity.18

In this paper, we wish to report a new and easy route to (Z) - β , γ -unsaturated nitriles by treatment of 3-acetoxy-4chloronitriles, with $SmI₂$ in the presence of visible light (400 W). A mechanism to explain the *Z-*stereoselectivity of this process is also proposed.

The starting materials **2** were readily prepared in good overall yields (63-85%) after the successive treatment of α -chloroaldehydes 1^{19} with the lithium enolate of the corresponding nitrile and acetic anhydride. The structure of the starting compounds **2** could be readily modified by using the appropriate (linear, branched, or unsaturated) aldehyde or/and nitrile (Scheme 1).

Initially, the β -elimination reaction of compounds 2 was carried out on 3-acetoxy-4-chlorodecanenitrile $2a$ ($R¹$ = $n\text{-}C_6\text{H}_{13}$; $\text{R}^2 = \text{H}$) at room temperature and in the absence of visible light. No reaction took place, and the starting material was recovered unchanged (Table 1).

Table 1. Synthesis of **2a** under Various Reaction Conditions

entry	400 W lamp	temp	time(h)	Z/E^a	yield $(\%)^b$
	no.	rt	10	-	-
$\overline{2}$	no.	reflux	10	80/20	22
3	yes	rt	6.5	78/22	85
4	yes	reflux	6.5	80/20	87

^a Z/*E* ratio was determined by GC-MS and/or 300 MHz 1H NMR analysis of the crude product **3a**. *^b* Isolated yield after column chromatography based on compound **2a**.

After testing the reaction conditions shown in Table 1, the best results were obtained by treatment of 3-acetoxy-4 chlorodecanenitrile $2a(0.4 \text{ mmol}, 1 \text{ equiv})$ with $\text{SmI}_2^{20}(3.0 \text{ mmol})$ equiv) at reflux, in the presence of visible light (400 W lamp). ,*γ*-Unsaturated nitrile **3a** was then obtained with good (*Z*) stereoselectivity and high yield (Table 1, entry 4).

To study the generality of this method, the β -elimination reaction was performed on various 3-acetoxy-4-chloronitriles **2**. As shown in Table 2, the reaction seems to be general, and linear or branched aliphatic or unsaturated nitriles could be efficiently obtained with good *Z-*stereoselectivity and high yield.

When compounds **2g** and **2l** (derived from 2-chlorophenylacetaldehyde) were utilized as starting materials, a change of the stereoselectivity was observed, affording the corresponding (E) - β , γ -unsaturated nitriles **3g** and **3l** with good stereoselectivity (Table 2, entries 7 and 12). An explanation of the different *E*- or *Z*-stereoselectivity observed on products **3** depending on the aldehyde used will be discussed below.

⁽¹¹⁾ To see a review about β -elimination reactions promoted by SmI₂, see: Concello´n, J. M.; Rodríguez-Solla, H. *Chem. Soc. Re*V*.* **²⁰⁰⁴**, *³³*, 599– 609.

⁽¹²⁾ Concello´n, J. M.; Pe´rez-Andre´s, J. A.; Rodríguez-Solla, H. *Angew. Chem., Int. Ed.* **2000**, *39*, 2773–2775.

⁽¹³⁾ Concellón, J. M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H. Chem.-Eur. J. 2001, 7, 3062-3068.

Chem.-*Eur. J.* **²⁰⁰¹**, *⁷*, 3062–3068. (14) Concello´n, J. M.; Huerta, M. *Tetrahedron Lett.* **²⁰⁰³**, *⁴⁴*, 1931– 1934.

⁽¹⁵⁾ Concellón, J. M.; Bernad, P. L.; Pérez-Andrés, J. A. *Angew. Chem.*, *Int. Ed.* **1999**, *38*, 2384–2386.

^{(16) (}a) Concello´n, J. M.; Bernad, P. L.; Bardales, E. *Org. Lett.* **2001**, 3, 937-939. (b) Concellón, J. M.; Rodríguez-Solla, H.; Simal, C.; Gómez, C. *Synlett* **2007**, 75–78.

^{(17) (}a) Tomisaka, Y.; Harato, N.; Sato, M.; Nomoto, A.; Ogawa, A. *Bull. Chem. Soc. Jpn.* **2006**, *79*, 1444–1446. (b) Prasad, E.; Knettle, B. W.; Flowers, R. A., II *Chem.*-*Eur. J.* **²⁰⁰⁵**, *¹¹*, 3105–3112. (c) Sumino, Y.; Harato, N.; Tomisaka, Y.; Ogawa, A. *Tetrahedron* **2003**, *59*, 10499–10508. (d) Molander, G. A.; Alonso-Alija, C. *J. Org. Chem.* **1998**, *63*, 4366–4373. (e) Molander, G. A.; Wolfe, C. N. *J. Org. Chem.* **1998**, *63*, 9031–9036. (f) Ogawa, A.; Sumino, Y.; Nanke, T.; Ohya, S.; Sonoda, N.; Hirao, T. *J. Am. Chem. Soc.* **1997**, *119*, 2745–2746. (g) Skene, W. G.; Scaiano, J. C.; Cozens, F. L. *J. Org. Chem.* **1996**, *61*, 7918–7921.

⁽¹⁸⁾ Concellón, J. M.; Rodríguez-Solla, H.; Simal, C.; Huerta, M. Org. *Lett.* **2005**, *7*, 5833–5835.

^{(19) (}a) α -Chloroaldehydes can be easily obtained, see: Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2004**, *126*, 4790–4791. (b) Chlorination of α -alkylated aldehydes was carried out using sulfuryl chloride: Stevens, C. L.; Farkas, E.; Gillis, B. *J. Am. Chem. Soc.* **¹⁹⁵⁴**, *⁷⁶*, 2695-2698.

⁽²⁰⁾ The solution of SmI2 in THF was rapidly obtained by reaction of diiodomethane with samarium powder in the presence of sonic waves: Concellón, J. M.; Rodríguez-Solla, H.; Bardales, E.; Huerta, M. *Eur. J. Org. Chem.* **²⁰⁰³**, *¹⁷⁷* ⁵-1778.

Table 2. Synthesis of (Z) - β , γ -Unsaturated Nitriles 3

		OAc 3 Sml_2			
	R^1	СN 400 W R^2	R^1	DМ R^2	
		2		3	
entry	3	R^1	\mathbb{R}^2	Z/E^a	yield $(\%)^b$
1	3a	$n\text{-}C_6H_{13}$	Η	81/19	87
$\overline{2}$	3 _b	$n - C_{10}H_{21}$	H	84/16	85
3	3c	$CH2=CH(CH2)7$	H	75/25	80
4	3d	(Z) -EtCH=CH(CH ₂) ₄	H	80/20	77
5	3e	PhCH ₂	H	75/25	92
6	3f	PhCH(Me)	H	75/25	71
7	$3\mathbf{g}$	Ph	H	15/85	95
8	3h	n -C6H ₁₃	Me	$87/13^c$	84
9	3i	$CH2=CH(CH2)7$	Me	$85/15^c$	81
10	3j	PhCH ₂	Me	93/7	76
11	3k	$n\text{-}C_{10}H_{21}$	$n-Pr$	$93/7$ ^c	74
12	31	Ph	$n-Pr$	$10/90^c$	86

^a Z/*E* ratio was determined by GC-MS and/or 300 MHz 1H NMR analysis of the crude products **3**. *^b* Isolated yield after column chromatography based on compound **2**. *^c* The major diastereoisomer was obtained pure after flash chromatography.

When compounds **2**, in which the chlorine atom is attached to a tertiary carbon atom, were used, the corresponding nitriles were obtained as a 1/1 *Z*/*E* mixture.

Starting from nitriles 2 in which ($R^2 \neq H$), β , *γ*-unsaturated nitriles were obtained with higher stereoselectivity (Table 1 , entries $8-11$).

The *Z*/*E* ratio was determined on the crude reaction products by GC-MS and/or ¹H NMR (300 MHz) spectroscopy. Unsaturated nitriles **2h**, **i**, **k**, and **l** could be purified by flash chromatography and were isolated as a pure diastereoisomer (Table 2).

The (*Z*)-stereochemistry of the C-C double bond in β , γ unsaturated nitriles **3a**-**^f** and **3h**-**^k** was assigned on the basis of the value of the ¹ H NMR coupling constants between the olefinic protons.²¹ In the particular case of (E) - β , γ -unsaturated nitriles **3g** and **3l**, the stereochemistry was assigned by the value of the $\rm{^1H}$ NMR coupling constant between the olefinic protons (15.9 and 15.8 Hz, respectively) and comparison with the NMR data previously reported in the literature for compound **3g**. 9

It is noteworthy that in all cases the starting materials were used as a nearly equimolecular mixture of two (**2a**-**g**) or four (**2h**-**l**) diastereoisomers.

The synthesis of compounds **3** takes place by an initial reaction of the C-Cl bond in compounds **²**, with 1 equiv of SmI₂ mediated by irradiation with visible light (400 W lamp), to generate a radical **4** (Scheme 2). Reduction of **4** with a second equivalent of SmI₂ would afford the organosamarium species **5** which, after 1,2-elimination, yields alkenes **3**. 22

Scheme 2. Mechanistic Proposal for the Conversion of **2a**-**^f** and **2h**-**^k** into **3a**-**^f** and **3h**-**^k**

We could surmise that the stereochemistry of this β -elimination reaction is governed by the chelation of the oxophilic samarium(III) center²³ to the carbonyl oxygen atom of the acetoxy group to generate species **5**. Thus, the elimination reaction could take place through transition state **I**, depicted in Scheme $2^{15,16b,8}$ It is noteworthy that the acetyl group plays two key roles: on one hand, it facilitates the elimination reaction (acetoxy group is a better leaving group than OH), and on the other hand, the coordination with the Sm^{III} center controls the stereochemical course of the elimination reaction. Thus, the elimination reaction (under the same reaction conditions) from nonacetylated compounds **2** afforded a complex mixture of unidentified products.

In the proposed transition state I, the CHR²CN group adopts an equatorial orientation to avoid 1,3-diaxial interactions with the samarium coordination sphere. $R¹$ adopts an axial orientation since no 1,3-diaxial interactions are present and would avoid interactions with the samarium coordination sphere. A β -elimination reaction from **I** as that shown in **5** affords (Z) - $β$, $γ$ -unsaturated nitriles 3.

The higher stereoselectivities observed from chloronitriles 2 in which $R^2 \neq H$ could be explained by taking into account that when the size of \mathbb{R}^2 (H, Me, and *n*-Pr) is increased the equatorial orientation of the CHR²CN group is even more favored than the axial orientation.

This model also explains the absence of selectivity observed from compounds **2**, in which the chlorine atom is attached to a tertiary carbon atom. In this case, the alkyl group would occupy the equatorial orientation that, in the case of compounds $2a-f$, $h-k$, is occupied by the hydrogen atom bonded to C-4 atom. Thus, since the steric hindrance of the alkyl group is higher than that shown by an H atom, this alkyl group competes with $R¹$ to occupy the axial

⁽²¹⁾ The coupling constants between the olefinic protons of compounds **3a**-**f** and **3h**-**k** ranging between $J = 10.2$ and 10.8 Hz were in accordance with the average literature values: Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. *Spectrometric Identification of Organic Compound*; John Wiley and Sons: New York, 1991; Chapter 4, Appendix F, p 221.

⁽²²⁾ The treatment of a mixture of diastereoisomers of the starting compounds **2** with SmI2 could allow to the corresponding organosamarium intermediate, as a mixture of diastereoisomers. The diastereoisomer with the adequate stereochemistry to generate the proposed cyclic transition state **I** could eliminate affording the corresponding unsaturated nitrile **3**. The other diastereoisomer, in which the coordination of the samarium with the oxygen carbonyl group would not be favored, could experiment an isomerization affording the other diastereoisomer, which could afford **3** through the transition state **I**. This elimination mechanism has been used to explain an important number of 1,2-elimination reactions promoted by SmI_2 (see refs 12-16).

^{(23) (}a) Molander, G. A. *Org. React.* **1995**, *46*, 211–368. (b) Keck, G. E.; Truong, A. P. *Org. Lett.* **2002**, *4*, 3131–3134.

orientation, and the elimination process takes place without stereoselectivity.

The *E*-selectivity observed in the reaction of aromatic chlorohydrins **2g** and **2l**, which is in opposition to the *Z*-selectivity shown by the other compounds, could be explained by taking into account the fact that the metalation with 2 equiv of SmI₂ affords a benzylic anion **6g**,**l** which is stabilized by the phenyl group. This delocalization by resonance would impede the elimination taking place via the cyclic transition state. Thus, the 1,2-elimination reaction occurs from the anion **6g**,**l** affording the thermodynamically favored *E*-alkene (Scheme 3). This result is in accordance

with other previously described β -elimination processes promoted by samarium diiodide in which a benzylic radical or anion is generated.^{16b,18,24}

In conclusion, we have described a β -elimination reaction promoted by samarium diiodide utilized in the stereoselective synthesis of (Z) - β , γ -unsaturated nitriles. This process has been carried out by the photoinduced metalation of nonactivated C-Cl bonds on readily available 3-acetoxy-4 chloronitriles.

Acknowledgment. We acknowledge the Ministerio de Educación y Cultura (CTQ2007-61132) for financial support. J.M.C. thanks his wife Carmen Fernández-Flórez for her time. H.R.S. and C.S. thank M.E.C. for a Ramón y Cajal Contract (Fondo Social Europeo) and for a predoctoral fellowship, respectively. N.R.P. thanks CSIC for a I3P contract. Our thanks to Euan C. Goddard (CRL, University of Oxford) for his revision of the English.

Supporting Information Available: General procedures for the synthesis of compounds **2** and **3** and copies of ¹ H and 13C NMR spectra for compounds **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801752M

^{(24) (}a) Davies, S. G.; Rodríguez-Solla, H.; Tamayo, J. A.; Cowley, A. R.; Concellón, C.; Garner, A. C.; Parkes, A. L.; Smith, A. D. Org. Biomol. *Chem.* **2005**, *3*, 1435–1447. (b) Davies, S. G.; Rodríguez-Solla, H.; Tamayo, J. A.; Garner, A. C.; Smith, A. D. *Chem. Commun.* **2004**, 2502–2503.